2,102 research outputs found

    A sensory-guided surgical micro-drill

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 The Authors.This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre.Queen Elizabeth Hospital, Birmingham, U

    Dynamic mechanisms of neocortical focal seizure onset.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tRecent experimental and clinical studies have provided diverse insight into the mechanisms of human focal seizure initiation and propagation. Often these findings exist at different scales of observation, and are not reconciled into a common understanding. Here we develop a new, multiscale mathematical model of cortical electric activity with realistic mesoscopic connectivity. Relating the model dynamics to experimental and clinical findings leads us to propose three classes of dynamical mechanisms for the onset of focal seizures in a unified framework. These three classes are: (i) globally induced focal seizures; (ii) globally supported focal seizures; (iii) locally induced focal seizures. Using model simulations we illustrate these onset mechanisms and show how the three classes can be distinguished. Specifically, we find that although all focal seizures typically appear to arise from localised tissue, the mechanisms of onset could be due to either localised processes or processes on a larger spatial scale. We conclude that although focal seizures might have different patient-specific aetiologies and electrographic signatures, our model suggests that dynamically they can still be classified in a clinically useful way. Additionally, this novel classification according to the dynamical mechanisms is able to resolve some of the previously conflicting experimental and clinical findings.This work was supported by the Doctoral Training Centre in Systems Biology (University of Manchester), the Biotechnology and Biological Sciences Research Council, and the Engineering and Physical Sciences Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Dynamic mechanisms of neocortical focal seizure onset.

    Get PDF
    Recent experimental and clinical studies have provided diverse insight into the mechanisms of human focal seizure initiation and propagation. Often these findings exist at different scales of observation, and are not reconciled into a common understanding. Here we develop a new, multiscale mathematical model of cortical electric activity with realistic mesoscopic connectivity. Relating the model dynamics to experimental and clinical findings leads us to propose three classes of dynamical mechanisms for the onset of focal seizures in a unified framework. These three classes are: (i) globally induced focal seizures; (ii) globally supported focal seizures; (iii) locally induced focal seizures. Using model simulations we illustrate these onset mechanisms and show how the three classes can be distinguished. Specifically, we find that although all focal seizures typically appear to arise from localised tissue, the mechanisms of onset could be due to either localised processes or processes on a larger spatial scale. We conclude that although focal seizures might have different patient-specific aetiologies and electrographic signatures, our model suggests that dynamically they can still be classified in a clinically useful way. Additionally, this novel classification according to the dynamical mechanisms is able to resolve some of the previously conflicting experimental and clinical findings

    The importance of modeling epileptic seizure dynamics as spatio-temporal patterns.

    Get PDF
    Published onlineJournal ArticleThis is the final version of the article. Available from Frontiers Media via the DOI in this record.The occurrence of seizures is the common feature across the spectrum of epileptic disorders. We describe how the use of mechanistic neural population models leads to novel insight into the dynamic mechanisms underlying two important types of epileptic seizures. We specifically stress the need for a spatio-temporal description of the rhythms to deal with the complexity of the pathophenotype. Adapted to functional and structural patient data, the macroscopic models may allow a patient-specific description of seizures and prediction of treatment outcome.We thank British research councils EPSRC and BBSRC and the University of Manchester for financial support. We thank Kaspar Schindler, Ulrich Stephani, Hiltrud Muhle, Rainer Boor, Michael Siniatchkin, Fernando Lopes da Silva, and Gilles van Luijtelaar for discussions. EEG data are from the University Hospital Inselspital, Bern, Switzerland

    Susceptibility to exertional heat illness and hospitalisation risk in UK military personnel.

    Get PDF
    BACKGROUND: Susceptibility to exertional heat illness (EHI) is considered multifactorial in nature. The aims of this study were to (1) review traditional susceptibility factors identified in cases of EHI and (2) determine how they are related to risk of hospitalisation. METHODS: Review of an electronic database of EHI reported in the British Army between 1 September 2007 and 31 December 2014. Cases were categorised by demographic, situational and susceptibility variables. Univariate and multivariate logistic regression was performed for the OR for hospitalisation by risk factor. RESULTS: 361 reports were included in the analysis. 33.5% of cases occurred in hot climates, 34.6% in temperate climates during summer months and 31.9% in temperate climates outside of summer months. Traditional susceptibility factors were reported in 193 but entirely absent from 168 cases. 137 cases (38.0%) were admitted to hospital. Adjusted OR for hospitalisation was lower for recruits (OR 0.42, 95% CI 0.18 to 0.99, p<0.05) and for personnel wearing occlusive dress (OR 0.56, 95% CI 0.34 to 0.93, p<0.05) or unacclimatised to heat (OR 0.31, 95% CI 0.15 to 0.66, p<0.01). CONCLUSIONS: The global, year-round threat of EHI is highlighted. Absence of susceptibility factors in nearly half of reports highlights the challenge of identifying EHI-prone individuals. Paradoxical association of traditional susceptibility factors with reduced hospitalisation risk may reflect the contemporary contexts in which severe EHI occurs. These findings also suggest a need for better evidence to inform guidelines that aim to prevent severe EHI concurrent to reducing overall morbidity

    A computational study of stimulus driven epileptic seizure abatement

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Active brain stimulation to abate epileptic seizures has shown mixed success. In spike-wave (SW) seizures, where the seizure and background state were proposed to coexist, single-pulse stimulations have been suggested to be able to terminate the seizure prematurely. However, several factors can impact success in such a bistable setting. The factors contributing to this have not been fully investigated on a theoretical and mechanistic basis. Our aim is to elucidate mechanisms that influence the success of single-pulse stimulation in noise-induced SW seizures. In this work, we study a neural population model of SW seizures that allows the reconstruction of the basin of attraction of the background activity as a four dimensional geometric object. For the deterministic (noise-free) case, we show how the success of response to stimuli depends on the amplitude and phase of the SW cycle, in addition to the direction of the stimulus in state space. In the case of spontaneous noise-induced seizures, the basin becomes probabilistic introducing some degree of uncertainty to the stimulation outcome while maintaining qualitative features of the noise-free case. Additionally, due to the different time scales involved in SW generation, there is substantial variation between SW cycles, implying that there may not be a fixed set of optimal stimulation parameters for SW seizures. In contrast, the model suggests an adaptive approach to find optimal stimulation parameters patient-specifically, based on real-time estimation of the position in state space. We discuss how the modelling work can be exploited to rationally design a successful stimulation protocol for the abatement of SW seizures using real-time SW detection.This work was supported by the EPSRC (EP/K026992/1), the BBSRC, the DTC for Systems Biology (University of Manchester), and the Nanyang Technological University Singapore. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor

    Get PDF
    A new dual-chain oligothiophene-based organic semiconductor, EH-5T-TTC, is presented. The molecule contains two conjugated chains linked by a fused tetrathiocin core. X-ray crystallography reveals a boat conformation within the 8-membered sulfur heterocycle core and extensive π–π and intermolecular sulfur–sulfur interactions in the bulk, leading to a 2-dimensional structure. This unusual molecule has been studied as a ternary component in organic solar cell blends containing the electron donor PTB7-Th and both fullerene (PC71BM) and non-fullerene acceptors ITIC and EH-IDTBR. By incorporating EH-5T-TTC as a ternary component, the power conversion efficiency of the binary blends containing non-fullerene acceptor increases by 17% (from 7.8% to 9.2%) and by 85% for the binary blend with fullerene acceptor (from 3.3% to 6.3%). Detailed characterisation of the ternary blend systems implies that the ternary small molecule EH-5T-TTC functions differently in polymer:fullerene and polymer:non-fullerene blends and has dual functions of morphology modification and complementary spectral absorption

    The impact of epilepsy surgery on the structural connectome and its relation to outcome

    Get PDF
    BACKGROUND: Temporal lobe surgical resection brings seizure remission in up to 80% of patients, with long-term complete seizure freedom in 41%. However, it is unclear how surgery impacts on the structural white matter network, and how the network changes relate to seizure outcome. METHODS: We used white matter fibre tractography on preoperative diffusion MRI to generate a structural white matter network, and postoperative T1-weighted MRI to retrospectively infer the impact of surgical resection on this network. We then applied graph theory and machine learning to investigate the properties of change between the preoperative and predicted postoperative networks. RESULTS: Temporal lobe surgery had a modest impact on global network efficiency, despite the disruption caused. This was due to alternative shortest paths in the network leading to widespread increases in betweenness centrality post-surgery. Measurements of network change could retrospectively predict seizure outcomes with 79% accuracy and 65% specificity, which is twice as high as the empirical distribution. Fifteen connections which changed due to surgery were identified as useful for prediction of outcome, eight of which connected to the ipsilateral temporal pole. CONCLUSIONS: Our results suggest that the use of network change metrics may have clinical value for predicting seizure outcome. This approach could be used to prospectively predict outcomes given a suggested resection mask using preoperative data only

    Masculinity as Governance: police, public service and the embodiment of authority, c. 1700-1850

    No full text
    About the book: Public Men offers an introduction to an exciting new field: the history of masculinities in the political domain and will be essential reading for students and specialists alike with interests in gender or political culture. By building upon new work on gender and political culture, these new case studies explore the gendering of the political domain and the masculinities of the men who have historically dominated it. As such, Public Men is a major contribution to our understanding of the history of Britain between the Eighteenth and the Twentieth centuries
    • …
    corecore